Login

Wranglers
GP: 71 | W: 30 | L: 36 | OTL: 5 | P: 65
GF: 205 | GA: 233 | PP%: 21.54% | PK%: 76.33%
GM : Maxime Lacasse | Morale : 58 | Team Overall : N/A
Next Games #1141 vs Firebirds
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Wranglers
30-36-5, 65pts
4
FINAL
2 Admirals
26-35-9, 61pts
Team Stats
L1StreakL2
14-19-2Home Record12-19-5
16-17-3Away Record14-16-4
5-4-1Last 10 Games3-6-1
2.89Goals Per Game2.83
3.28Goals Against Per Game3.70
21.54%Power Play Percentage16.85%
76.33%Penalty Kill Percentage77.42%
Wranglers
30-36-5, 65pts
2
FINAL
3 Firebirds
38-27-6, 82pts
Team Stats
L1StreakW4
14-19-2Home Record21-13-2
16-17-3Away Record17-14-4
5-4-1Last 10 Games6-4-0
2.89Goals Per Game3.18
3.28Goals Against Per Game2.89
21.54%Power Play Percentage19.93%
76.33%Penalty Kill Percentage80.69%
Firebirds
38-27-6, 82pts
2023-03-18
Wranglers
30-36-5, 65pts
Team Stats
W4StreakL1
21-13-2Home Record14-19-2
17-14-4Away Record16-17-3
6-4-0Last 10 Games5-4-1
3.18Goals Per Game2.89
2.89Goals Against Per Game3.28
19.93%Power Play Percentage21.54%
80.69%Penalty Kill Percentage76.33%
Wranglers
30-36-5, 65pts
2023-03-19
Senators
39-27-6, 84pts
Team Stats
L1StreakL1
14-19-2Home Record19-13-3
16-17-3Away Record20-14-3
5-4-1Last 10 Games4-5-1
2.89Goals Per Game3.08
3.28Goals Against Per Game2.85
21.54%Power Play Percentage20.92%
76.33%Penalty Kill Percentage80.00%
Wranglers
30-36-5, 65pts
2023-03-22
Admirals
26-35-9, 61pts
Team Stats
L1StreakL2
14-19-2Home Record12-19-5
16-17-3Away Record14-16-4
5-4-1Last 10 Games3-6-1
2.89Goals Per Game2.83
3.28Goals Against Per Game3.70
21.54%Power Play Percentage16.85%
76.33%Penalty Kill Percentage77.42%
Team Leaders
Goals
Michael Dal Colle
22
Sam BennettAssists
Sam Bennett
40
Sam BennettPoints
Sam Bennett
58
Sam BennettPlus/Minus
Sam Bennett
13
Wins
Connor Ingram
23
Save Percentage
Callum Booth
0.904

Team Stats
Goals For
205
2.89 GFG
Shots For
2277
32.07 Avg
Power Play Percentage
21.5%
56 GF
Offensive Zone Start
40.9%
Goals Against
233
3.28 GAA
Shots Against
2367
33.34 Avg
Penalty Kill Percentage
76.3%
80 GA
Defensive Zone Start
41.5%
Team Info

General ManagerMaxime Lacasse
CoachBob Hartley
DivisionPacific
ConferenceWestern
CaptainJosh Hennessy
Assistant #1
Assistant #2Kevin Gravel


Arena Info

Capacity3,000
Attendance2,752
Season Tickets300


Roster Info

Pro Team23
Farm Team22
Contract Limit45 / 50
Prospects44


Team History

This Season30-36-5 (65PTS)
History164-105-17 (0.573%)
Playoff Appearances1
Playoff Record (W-L)2-4
Stanley Cup0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Adam ErneX100.009374646680817870577170676374766852002711,000,000$
2Brandon BaddockX100.00724967628689905957595962537471541900271951,000$
3Cole SchneiderXX100.00623789657887876667656669628688472200321750,000$
4Dmytro TimashovX100.00553986666197937158696665657167585100261925,000$
5Gabriel GagneX100.00704387638789856557646370537169565100261950,000$
6Pierre EngvallX100.00673983719282786767666769667066564100261850,000$
7Josh Hennessy (C)X100.00523582637465656465656566546569292200381960,000$
8Michael Dal ColleXX100.005936936984856371607172676473737937002621,300,000$
9Sam BennettXX100.008981607076728472787169696873758038002622,000,000$
10Taylor Ward (R)X100.007359747681777579616871707165685032002412,000,000$
11Theo Rochette (R)X100.00585085806980807575696871686168755600213850,000$
12Anton LindholmX100.00855377647176696730676470467773461500281750,000$
13Charles-David BeaudoinX100.00634565617270806130626168558073473800291999,999$
14Jonas SiegenthalerX100.00805175648580636730696568466968643800251995,500$
15Kevin Gravel (A)X100.00563694648979636730686572498277364100311950,000$
16Cole Fraser (R)X100.00604186667564696130596166486869662100231700,000$
17Riley StillmanX100.00635579777981807630726875666668684900251750,000$
18Dawson Barteaux (R)X100.00654887777962667630666673666368604000232750,000$
Scratches
1Andrew O'BrienX100.007765616285717260306261615578695220003011,000,000$
2Austin StrandX100.00856569638784796430646369467170552100261890,000$
3Hunter WarnerX100.00826167628788936130626162517269574500271950,000$
TEAM AVERAGE100.0070517867807977684866656858727157360
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Callum Booth99.0073727183768282828273737074664500251970,000$
2Connor Ingram100.0079747380778384848379786872622500251975,000$
Scratches
TEAM AVERAGE99.507673728277838383837676697364350
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bob Hartley75727575948852CAN6121,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Sam BennettWranglers (CGY)C/LW701840581310210155165209441418.61%15120117.1661319421840000222155.05%165500000.9701011742
2Michael Dal ColleWranglers (CGY)LW/RW71222951104071052015314710.95%13123217.3561016441830001151045.10%10200000.8300000353
3Adam RuzickaFlamesC62172542-15280125176188621599.04%23140322.64414185018700052773254.22%158800000.6012000214
4Taylor WardWranglers (CGY)RW66162541-137115138111203631187.88%10128519.4878154919900021310053.04%24700100.6422012224
5Adam ErneWranglers (CGY)LW691525409815186102183551318.20%21139120.1755103818900051763047.00%10000000.5701001313
6Riley StillmanWranglers (CGY)D6783240-156801409513256916.06%93159623.8251621722070000243200.00%000000.5000000111
7Dawson BarteauxWranglers (CGY)D71112839-25801039111539809.57%95161822.799918612120001246100.00%000000.4800000121
8Kevin GravelWranglers (CGY)D71924336120138210229578.82%122155521.905813471880002253300.00%000000.4200000101
9Jonas SiegenthalerWranglers (CGY)D6182230-19402025256254114.29%67123920.33189251430000164010.00%000000.4800000022
10Steven LorentzFlamesC/LW61918277475147106130341106.92%1381513.36000090001251143.93%84900000.6600001131
11Pierre EngvallWranglers (CGY)LW559132216046609130769.89%668312.420113120001112056.92%6500000.6400000201
12Cole SchneiderWranglers (CGY)LW/RW4012719600104779234615.19%754813.721128360001123047.06%5100000.6900000220
13Charles-David BeaudoinWranglers (CGY)D617121918001083740112117.50%6792815.22101428000043310.00%000000.4100000200
14Gabriel GagneWranglers (CGY)RW7171219412057559637797.29%1189112.560001120000110250.00%7200000.4300000011
15Hunter WarnerWranglers (CGY)D49314176695115262391513.04%5382416.841123330000107000.00%000000.4100100001
16Theo RochetteWranglers (CGY)C7061016-8221018977525588.00%65708.150229360002951251.01%64500000.5600101010
17Anton LindholmWranglers (CGY)D4331013-4500128373920237.69%4371916.741121140000080000.00%000000.3600000100
18Noel AcciariFlamesC/RW5258132535110836524637.69%959611.480000500011051051.95%58900000.4400001011
19Cole FraserWranglers (CGY)D442810812038191881011.11%2862814.2800024000059000.00%000000.3200000000
20Austin StrandWranglers (CGY)D311455140491818585.56%3042813.81000417000029000.00%000000.2300000100
21Dmytro TimashovWranglers (CGY)LW70055-2001819349240.00%42864.0900015000010041.27%6300000.3500000000
22Josh HennessyWranglers (CGY)C55123-500410104510.00%11402.56000111000010047.69%13000000.4300000000
23Tim SchallerFlamesC/LW41122203252220.00%0276.8500000000000040.91%2200001.4600000001
24Andrew O'BrienWranglers (CGY)D310120081111100.00%03411.640000100002000.00%000000.5700000000
25Brandon BaddockWranglers (CGY)LW2011200211010.00%0136.5000001000000066.67%900001.5400000000
26Marc MethotFlamesD40113001256110.00%67518.830001500006000.00%000000.2700000010
27Nikolay KuleminFlamesLW/RW4011-100225230.00%3369.1900000000000045.83%2400000.5400000000
28Adam CracknellFlamesC/LW/RW2000-100010120.00%14120.6900000000030046.67%1500000.0000000000
29Greg PaterynFlamesD1000220310000.00%01919.120000000002000.00%000000.0000000000
30Karl AlznerFlamesD4000-400220110.00%04310.910000000000000.00%000000.0000000000
Team Total or Average1334191377568188875519491608212567315148.99%7472087715.6552971494761959000222133261051.75%622600100.5436227292727
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Connor IngramWranglers (CGY)53232540.9033.3029836116416890130.62585219324
2Callum BoothWranglers (CGY)2471110.9043.02129301656750000.00001952200
Team Total or Average77303650.9033.2142766222923640130.62587171524


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam ErneWranglers (CGY)LW271995-04-20No214 Lbs6 ft1NoNoNo1Pro & Farm1,000,000$0$0$NoLink / NHL Link
Andrew O'BrienWranglers (CGY)D301992-11-21No206 Lbs6 ft3NoNoYes1Pro & Farm1,000,000$0$0$NoLink
Anton LindholmWranglers (CGY)D281994-11-29No191 Lbs5 ft11NoNoNo1Pro & Farm750,000$0$0$NoLink
Austin StrandWranglers (CGY)D261997-02-17No216 Lbs6 ft3NoNoNo1Pro & Farm890,000$0$0$NoLink
Brandon BaddockWranglers (CGY)LW271995-03-29No215 Lbs6 ft3NoNoNo1Pro & Farm951,000$0$0$NoLink
Callum BoothWranglers (CGY)G251997-05-21No187 Lbs6 ft4NoNoNo1Pro & Farm970,000$0$0$NoLink
Charles-David BeaudoinWranglers (CGY)D291994-01-10No186 Lbs6 ft0NoNoYes1Pro & Farm999,999$0$0$NoLink
Cole FraserWranglers (CGY)D231999-08-23 03:52:49Yes195 Lbs6 ft2NoNoNo1Pro & Farm700,000$0$0$NoLink / NHL Link
Cole SchneiderWranglers (CGY)LW/RW321990-08-26No203 Lbs6 ft1NoNoYes1Pro & Farm750,000$0$0$NoLink
Connor IngramWranglers (CGY)G251997-03-31No198 Lbs6 ft2NoNoNo1Pro & Farm975,000$0$0$NoLink
Dawson BarteauxWranglers (CGY)D232000-01-12 18:55:24Yes190 Lbs6 ft1NoNoNo2Pro & Farm750,000$0$0$No750,000$Link / NHL Link
Dmytro TimashovWranglers (CGY)LW261996-10-01No195 Lbs5 ft10NoNoNo1Pro & Farm925,000$0$0$NoLink
Gabriel GagneWranglers (CGY)RW261996-11-11No186 Lbs6 ft5NoNoNo1Pro & Farm950,000$0$0$NoLink
Hunter WarnerWranglers (CGY)D271995-09-21No220 Lbs6 ft3NoNoNo1Pro & Farm950,000$0$0$NoLink
Jonas SiegenthalerWranglers (CGY)D251997-05-06No206 Lbs6 ft3NoNoNo1Pro & Farm995,500$0$0$NoLink
Josh HennessyWranglers (CGY)C381985-02-07No200 Lbs6 ft0NoNoYes1Pro & Farm960,000$0$0$NoLink
Kevin GravelWranglers (CGY)D311992-03-06No211 Lbs6 ft4NoNoYes1Pro & Farm950,000$0$0$NoLink / NHL Link
Michael Dal ColleWranglers (CGY)LW/RW261996-06-20No204 Lbs6 ft3NoNoNo2Pro & Farm1,300,000$0$0$No1,300,000$Link
Pierre EngvallWranglers (CGY)LW261996-05-31 07:57:22No214 Lbs6 ft5NoNoNo1Pro & Farm850,000$0$0$NoLink / NHL Link
Riley StillmanWranglers (CGY)D251998-03-09 15:10:38No196 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoLink / NHL Link
Sam BennettWranglers (CGY)C/LW261996-06-20No195 Lbs6 ft1NoNoNo2Pro & Farm2,000,000$0$0$No2,000,000$Link / NHL Link
Taylor WardWranglers (CGY)RW241998-03-31 17:48:19Yes207 Lbs6 ft2NoNoYes1Pro & Farm2,000,000$0$0$NoLink / NHL Link
Theo RochetteWranglers (CGY)C212002-02-20 16:51:02Yes161 Lbs5 ft10NoNoNo3Pro & Farm850,000$0$0$No850,000$850,000$Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2326.78200 Lbs6 ft21.221,009,413$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Adam ErneTheo RochetteTaylor Ward40122
2Michael Dal ColleSam BennettCole Schneider30122
3Pierre EngvallJosh HennessyGabriel Gagne20122
4Dmytro TimashovTaylor WardAdam Erne10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Riley StillmanDawson Barteaux40122
2Kevin GravelAnton Lindholm30122
3Jonas SiegenthalerCharles-David Beaudoin20122
4Cole FraserRiley Stillman10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Adam ErneTheo RochetteTaylor Ward60122
2Michael Dal ColleSam BennettCole Schneider40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Riley StillmanDawson Barteaux60122
2Kevin GravelAnton Lindholm40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Taylor WardAdam Erne60122
2Theo RochetteSam Bennett40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Riley StillmanDawson Barteaux60122
2Kevin GravelAnton Lindholm40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Taylor Ward60122Riley StillmanDawson Barteaux60122
2Adam Erne40122Kevin GravelAnton Lindholm40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Taylor WardAdam Erne60122
2Theo RochetteSam Bennett40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Riley StillmanDawson Barteaux60122
2Kevin GravelAnton Lindholm40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Adam ErneTheo RochetteTaylor WardRiley StillmanDawson Barteaux
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Adam ErneTheo RochetteTaylor WardRiley StillmanDawson Barteaux
Extra Forwards
Normal PowerPlayPenalty Kill
Brandon Baddock, Pierre Engvall, Gabriel GagneBrandon Baddock, Pierre EngvallGabriel Gagne
Extra Defensemen
Normal PowerPlayPenalty Kill
Jonas Siegenthaler, Charles-David Beaudoin, Cole FraserJonas SiegenthalerCharles-David Beaudoin, Cole Fraser
Penalty Shots
Taylor Ward, Adam Erne, Theo Rochette, Sam Bennett, Michael Dal Colle
Goalie
#1 : Callum Booth, #2 : Connor Ingram
Custom OT Lines Forwards
Taylor Ward, Adam Erne, Theo Rochette, Sam Bennett, Michael Dal Colle, Cole Schneider, Cole Schneider, Pierre Engvall, Gabriel Gagne, Dmytro Timashov, Josh Hennessy
Custom OT Lines Defensemen
Riley Stillman, Dawson Barteaux, Kevin Gravel, Anton Lindholm, Jonas Siegenthaler


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals2110000046-21010000004-41100000042220.50047110069676566879471974329521716439111.11%80100.00%01347262051.41%1354265950.92%601113453.00%168411521698529899444
2Americans211000008621010000035-21100000051420.500815230069676564979471974329711730316233.33%13376.92%01347262051.41%1354265950.92%601113453.00%168411521698529899444
3Barracuda32100000871110000003212110000055040.667816240069676569379471974329105242978500.00%12466.67%01347262051.41%1354265950.92%601113453.00%168411521698529899444
4Bears1010000027-51010000027-50000000000000.000235006967656257947197432943121621200.00%8362.50%01347262051.41%1354265950.92%601113453.00%168411521698529899444
5Bruins1000010034-1000000000001000010034-110.50036900696765638794719743291916820600.00%40100.00%01347262051.41%1354265950.92%601113453.00%168411521698529899444
6Canucks513010001315-23120000068-22010100077040.400132437006967656155794719743291553710212420525.00%24579.17%01347262051.41%1354265950.92%601113453.00%168411521698529899444
7Comets211000006511010000002-21100000063320.50069150069676568079471974329671418509111.11%9277.78%01347262051.41%1354265950.92%601113453.00%168411521698529899444
8Condors413000001419-52110000068-220200000811-320.2501426401069676561337947197432915053409013430.77%20480.00%01347262051.41%1354265950.92%601113453.00%168411521698529899444
9Eagles21001000422100010003211100000010141.00047110169676566179471974329462016441119.09%8275.00%01347262051.41%1354265950.92%601113453.00%168411521698529899444
10Firebirds3120000056-11010000012-12110000044020.333591400696765669794719743291122157958112.50%14192.86%01347262051.41%1354265950.92%601113453.00%168411521698529899444
11Griffins2020000059-41010000014-31010000045-100.000581300696765657794719743296727205811100.00%9366.67%01347262051.41%1354265950.92%601113453.00%168411521698529899444
12Gulls41200001814-62110000057-22010000137-430.3758152300696765612279471974329141533210114214.29%16756.25%01347262051.41%1354265950.92%601113453.00%168411521698529899444
13Icehogs2110000078-1110000004221010000036-320.5007142100696765665794719743295216184512216.67%8450.00%01347262051.41%1354265950.92%601113453.00%168411521698529899444
14Islanders2010010047-3000000000002010010047-310.25048120069676566079471974329621618608112.50%9277.78%01347262051.41%1354265950.92%601113453.00%168411521698529899444
15Lions2110000056-11010000024-21100000032120.500510150069676567279471974329531522518225.00%10460.00%01347262051.41%1354265950.92%601113453.00%168411521698529899444
16Marlies11000000752110000007520000000000021.000713200069676565179471974329421410313266.67%4175.00%01347262051.41%1354265950.92%601113453.00%168411521698529899444
17Monsters211000008801010000025-31100000063320.500814220069676566879471974329742816588337.50%8187.50%01347262051.41%1354265950.92%601113453.00%168411521698529899444
18Moose32000100972210001005411100000043150.8339172600696765610679471974329931320679333.33%9188.89%01347262051.41%1354265950.92%601113453.00%168411521698529899444
19Penguins11000000422000000000001100000042221.000471100696765637794719743292944249333.33%20100.00%01347262051.41%1354265950.92%601113453.00%168411521698529899444
20Phantoms11000000321110000003210000000000021.0003690069676562879471974329207833200.00%4175.00%01347262051.41%1354265950.92%601113453.00%168411521698529899444
21Reign41200100111012010010047-32110000073430.3751122330169676561367947197432913739509613215.38%23386.96%01347262051.41%1354265950.92%601113453.00%168411521698529899444
22Roadrunners4120100016160201010008802110000088040.5001631470069676561217947197432915250548716637.50%25772.00%01347262051.41%1354265950.92%601113453.00%168411521698529899444
23Rocket22000000835220000008350000000000041.000815230069676566079471974329652018558337.50%90100.00%01347262051.41%1354265950.92%601113453.00%168411521698529899444
24SKA1010000035-2000000000001010000035-200.00036910696765621794719743293296294250.00%20100.00%01347262051.41%1354265950.92%601113453.00%168411521698529899444
25Senators1010000023-11010000023-10000000000000.00024600696765626794719743294071028300.00%4250.00%01347262051.41%1354265950.92%601113453.00%168411521698529899444
26Silver Knights40400000617-1120200000310-72020000037-400.000610161069676561297947197432914847569718211.11%22959.09%01347262051.41%1354265950.92%601113453.00%168411521698529899444
27Stars210000101055100000104311100000062441.0001018280069676567979471974329602020507342.86%10280.00%01347262051.41%1354265950.92%601113453.00%168411521698529899444
28Thunderbirds2020000027-51010000004-41010000023-100.000246006967656557947197432968232255300.00%11281.82%01347262051.41%1354265950.92%601113453.00%168411521698529899444
29Wild220000001082110000005411100000054141.0001017270069676567979471974329692418637228.57%9188.89%01347262051.41%1354265950.92%601113453.00%168411521698529899444
30Wolf Pack1010000013-2000000000001010000013-200.00012300696765626794719743293691422400.00%5180.00%01347262051.41%1354265950.92%601113453.00%168411521698529899444
31Wolves31200000911-21010000034-12110000067-120.333915240069676561087947197432910725386914214.29%19573.68%01347262051.41%1354265950.92%601113453.00%168411521698529899444
Total71263603411205233-283511190221090119-29361517012011151141650.458205378583326967656227779471974329236769780617752605621.54%3388076.33%01347262051.41%1354265950.92%601113453.00%168411521698529899444
_Since Last GM Reset71263603411205233-283511190221090119-29361517012011151141650.458205378583326967656227779471974329236769780617752605621.54%3388076.33%01347262051.41%1354265950.92%601113453.00%168411521698529899444
_Vs Conference49172503211139160-2124712022106179-18251013010017881-3450.459139256395226967656158179471974329164648658612071773720.90%2365875.42%01347262051.41%1354265950.92%601113453.00%168411521698529899444
_Vs Division27819021016588-231349011002844-1614410010013744-7220.4076512218721696765683779471974329948274366681911617.58%1313374.81%01347262051.41%1354265950.92%601113453.00%168411521698529899444

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7165L120537858322772367697806177532
All Games
GPWLOTWOTL SOWSOLGFGA
7126363411205233
Home Games
GPWLOTWOTL SOWSOLGFGA
351119221090119
Visitor Games
GPWLOTWOTL SOWSOLGFGA
3615171201115114
Last 10 Games
WLOTWOTL SOWSOL
540100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2605621.54%3388076.33%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
794719743296967656
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1347262051.41%1354265950.92%601113453.00%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
168411521698529899444


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2022-10-116Canucks4Wranglers3BLBoxScore
5 - 2022-10-1535Barracuda2Wranglers3BWBoxScore
7 - 2022-10-1747Wranglers1Wolves5ALBoxScore
9 - 2022-10-1964Wranglers1Gulls4ALBoxScore
11 - 2022-10-2179Condors6Wranglers2BLBoxScore
13 - 2022-10-2398Roadrunners3Wranglers4BWXBoxScore
15 - 2022-10-25112Wranglers6Canucks5AWXBoxScore
17 - 2022-10-27123Wranglers1Barracuda2ALBoxScore
19 - 2022-10-29137Wranglers7Roadrunners6AWBoxScore
21 - 2022-10-31151Reign3Wranglers2BLXBoxScore
23 - 2022-11-02167Wranglers5Condors7ALBoxScore
25 - 2022-11-04182Wranglers2Silver Knights4ALBoxScore
26 - 2022-11-05190Canucks1Wranglers2BWBoxScore
30 - 2022-11-09218Gulls6Wranglers1BLBoxScore
32 - 2022-11-11236Rocket2Wranglers3BWBoxScore
34 - 2022-11-13250Wranglers2Islanders3ALXBoxScore
37 - 2022-11-16267Eagles2Wranglers3BWXBoxScore
39 - 2022-11-18283Wranglers4Penguins2AWBoxScore
42 - 2022-11-21300Gulls1Wranglers4BWBoxScore
46 - 2022-11-25327Wild4Wranglers5BWBoxScore
48 - 2022-11-27341Wranglers5Americans1AWBoxScore
50 - 2022-11-29360Comets2Wranglers0BLBoxScore
52 - 2022-12-01370Wranglers1Wolf Pack3ALBoxScore
55 - 2022-12-04390Americans5Wranglers3BLBoxScore
57 - 2022-12-06402Wranglers2Thunderbirds3ALBoxScore
60 - 2022-12-09424Roadrunners5Wranglers4BLBoxScore
62 - 2022-12-11441Wranglers2Gulls3ALXXBoxScore
64 - 2022-12-13454Marlies5Wranglers7BWBoxScore
66 - 2022-12-15471Wranglers4Barracuda3AWBoxScore
68 - 2022-12-17483Wranglers6Monsters3AWBoxScore
69 - 2022-12-18496Senators3Wranglers2BLBoxScore
72 - 2022-12-21519Stars3Wranglers4BWXXBoxScore
73 - 2022-12-22527Wranglers2Islanders4ALBoxScore
76 - 2022-12-25545Wranglers3Bruins4ALXBoxScore
77 - 2022-12-26559Lions4Wranglers2BLBoxScore
80 - 2022-12-29577Wranglers3Condors4ALBoxScore
81 - 2022-12-30589Rocket1Wranglers5BWBoxScore
85 - 2023-01-03612Wranglers3Lions2AWBoxScore
87 - 2023-01-05625Reign4Wranglers2BLBoxScore
89 - 2023-01-07646Silver Knights5Wranglers3BLBoxScore
90 - 2023-01-08654Wranglers1Silver Knights3ALBoxScore
93 - 2023-01-11677Wranglers3Icehogs6ALBoxScore
95 - 2023-01-13685Canucks3Wranglers1BLBoxScore
98 - 2023-01-16708Silver Knights5Wranglers0BLBoxScore
100 - 2023-01-18724Wranglers5Wild4AWBoxScore
103 - 2023-01-21742Wranglers1Eagles0AWBoxScore
104 - 2023-01-22751Phantoms2Wranglers3BWBoxScore
107 - 2023-01-25770Wranglers2Reign3ALBoxScore
109 - 2023-01-27779Griffins4Wranglers1BLBoxScore
111 - 2023-01-29798Wranglers1Roadrunners2ALBoxScore
113 - 2023-01-31812Thunderbirds4Wranglers0BLBoxScore
115 - 2023-02-02827Wranglers4Moose3AWBoxScore
117 - 2023-02-04843Wolves4Wranglers3BLBoxScore
119 - 2023-02-06857Wranglers5Wolves2AWBoxScore
121 - 2023-02-08870Wranglers1Canucks2ALBoxScore
124 - 2023-02-11884Bears7Wranglers2BLBoxScore
127 - 2023-02-14907Icehogs2Wranglers4BWBoxScore
129 - 2023-02-16923Wranglers3SKA5ALBoxScore
131 - 2023-02-18939Wranglers6Comets3AWBoxScore
132 - 2023-02-19946Admirals4Wranglers0BLBoxScore
135 - 2023-02-22971Condors2Wranglers4BWBoxScore
138 - 2023-02-25989Wranglers6Stars2AWBoxScore
140 - 2023-02-271005Moose2Wranglers1BLXBoxScore
144 - 2023-03-031033Moose2Wranglers4BWBoxScore
146 - 2023-03-051047Wranglers4Griffins5ALBoxScore
148 - 2023-03-071065Monsters5Wranglers2BLBoxScore
149 - 2023-03-081070Wranglers2Firebirds1AWBoxScore
152 - 2023-03-111090Wranglers5Reign0AWBoxScore
154 - 2023-03-131104Firebirds2Wranglers1BLBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
156 - 2023-03-151124Wranglers4Admirals2AWBoxScore
157 - 2023-03-161131Wranglers2Firebirds3ALBoxScore
159 - 2023-03-181141Firebirds-Wranglers-
160 - 2023-03-191146Wranglers-Senators-
163 - 2023-03-221159Wranglers-Admirals-
167 - 2023-03-261182Barracuda-Wranglers-
171 - 2023-03-301205Barracuda-Wranglers-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price5025
Attendance67,62128,688
Attendance PCT96.60%81.97%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
3 2752 - 91.72% 146,366$5,122,815$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,995,598$ 2,321,650$ 2,321,650$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
13,343$ 2,087,567$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
439,098$ 16 19,090$ 305,440$




Wranglers Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Max Veronneau3761161762921190590620106610.88%77714218.992134551934041218944.35%00.821330
2Dmytro Timashov45010418428827439363112538.30%77790517.57144054179101712444.48%00.731223
3Kevin Gravel417761852614918846850772810.44%671938322.50247296341000101140.00%00.5600
4Reid Boucher33690167257413621664312157.41%71671119.982255772530112423151.15%00.77910
5Kevin Lynch3041001322327635687280092010.87%84539717.76162844112000828857.07%00.8644

Wranglers Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Callum Booth34619893420.9043.101953001310081050701300.736144
2Connor Ingram102504440.9073.05575212429231460240.68816
3Dereck Baribeau5212800.9192.722029009211320000.0000

Wranglers Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
202076412001662272236363819140111213112293822600550141114271042724927640384919014262382986190560250073552216392545622.05%2204878.18%21379276249.93%1413273351.70%644124751.64%181712521804561991497
202076412001662272236363819140111213112293822600550141114271042724927640384919014262382986190560250073552216392545622.05%2204878.18%21379276249.93%1413273351.70%644124751.64%181712521804561991497
202176322903534242232103817150121211111103815140232213112110852424316731386816911249482982380760242267860217702776222.38%2625977.48%21478277853.20%1475274553.73%614120051.17%180112321809571995500
202271263603411205233-283511190221090119-2936151701201115114165205378583326967656227779471974329236769780617752605621.54%3388076.33%01347262051.41%1354265950.92%601113453.00%168411521698529899444
Total Regular Season299140105082116999193754149666205646463474-1115074430315123528463653589911793278441132333031445100173281326433602099789284524526823104523022.01%104023577.40%655831092251.12%56551087052.02%2503482851.84%712048907117222438771940
Playoff
2020624000001721-4312000001011-131200000710-341733500047601945373680193594314916425.00%13192.31%010821949.32%11122449.55%518857.95%13390153447337
Total Playoff624000001721-4312000001011-131200000710-341733500047601945373680193594314916425.00%13192.31%010821949.32%11122449.55%518857.95%13390153447337

Wranglers Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Reid Boucher6246-60321229.09%113923.18123400000056.89%00.8600
2Mikko Lehtonen6145-3283425.00%812420.7810110000000.00%00.8000
3Joakim Nygard6235-22381910.53%311118.64000300000122.22%00.8900
4Gabriel Gagne6235-121241612.50%310818.07000200000033.33%00.9200
5Dmytro Timashov6505-14661729.41%412120.31101100011022.22%00.8200

Wranglers Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Callum Booth62400.8813.8732600211760000.0000
2Dereck Baribeau10001.0000.0033000170000.0000